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ABSTRACT

The advancement of modern remote sensing technology reduces the cost of acquiring

three-dimensional information in the real-world. The information obtained is generally

represented in discrete data points known as the point cloud. Many researchers focus on

algorithms and technologies to extract the underlying topology supporting many interest-

ing applications such as indoor navigation and heritage reconstruction. In this thesis, we

focus on the thin and linear structures within the point cloud instead of surfaces and we

propose an automatic pipeline taking raw point clouds of large-scale landscapes, which

are generated by the multi-perspective image reconstruction algorithms. Our pipeline

removes outlier, reduces redundancy, computes local features, and generate vectoriza-

tion result of the linear structures. Moreover, to provide a standard vectorization result

for evaluation purposes, we designed and implemented a manual tool allowing the user

selection of the points of interest and generate vectorization results with proper visual

feedback. A real-world problem of digitizing the location and shape information of the

high-voltage powerlines is the main task of our pipeline and it provides a context for

analyzing the correctness and effectiveness of each stage in our pipeline.
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CHAPTER 1

INTRODUCTION

With the advancement of modern remote sensing technology and data collection hard-

ware, three-dimensional point cloud data (PCD) is becoming a popular format to repre-

sent real-world spatial information and provide the superior benefits to support a wide

range of low-cost and high-resolution applications in both research and commercial field [1].

Point cloud data comparing with other representations of a real-world object is more con-

cise as there is no structural binding between every single point, which enables the pos-

sibility of progressive streaming and better visual effect over traditional mesh representa-

tion [2]. As the inherited discrete characteristic of PCD, it can be processed and rendered

at a very fast rate through parallel computation by modern GPU general computation

cores and rendering pipelines [3].

Typically, classified by the acquisition approach of the point cloud data, two main

types of point cloud are commonly used: i) directly acquired by depth-sensing devices,

such as the Kinect sensor and Light Detection and Ranging (LiDAR) devices, capturing

the surrounding surfaces’ distances; ii) indirectly generated by the 3D reconstruction algo-

rithm from multiple perspectives (or views) camera images [4]. Both approaches generate

raw point cloud data which is often noisy or partially erroneous [5]. Denoising of PCD is

an essential procedure during the preprocessing stage of modern industrial applications

as noisy input leads to great difficultird and performance downgrade at the subsequent

surface reconstruction stage [6]. In this thesis, the target point clouds are acquired by 3D

reconstruction of large-scale landscapes, which consist of various types of artificial sur-

faces (e.g. road, building) and natural objects (e.g. vegetation, mound). The input point

cloud is of non-uniform density distribution, measurement errors, and uneven spacing

between data points. Therefore, research about point cloud denoising is gaining more

attention in order to provide better experiences to end-users [6].

Since PCD contains significant geometric information about the objects and environ-

ments, many researchers [7] pay attention to the extraction of such information from the
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rectified point cloud (i.e. noisy and erroneous data point pruned) locally or globally as 3D

descriptors (or features) of the point cloud. A powerful descriptor contains enough ge-

ometric information to resolve a real-world application problem, such as 3D point cloud

object classification and recognization. For the point cloud of landscapes, the combina-

tion of multiple distribution models makes the global descriptor ineffective and difficult

to compute from massive data points. As a result, our system will focus on the usage of

local descriptors on each data point to help classify and filter the original point cloud. In

order to extract local geometric information from the unorganized point cloud, an effi-

cient nearest neighbor search (NNS) algorithm is adopted, which builds a data structure

to organize points especially for NSS query purpose [8]. In a parallel manner, it is possible

to process each data point in the PCD to acquire their local descriptors and, therefore, the

classification and filtering process can be achieved to extract our data point of interest.

Traditional researches on point cloud focus on surface reconstruction, which is the

basic step for many modern applications in the computer vision field, such as robot’s in-

door navigation, autonomous vehicles, heritage/architecture reconstruction, and many

others [9]. These researches make use of local point distribution to extract geometric in-

formation (e.g. local normal estimation) and apply smoothing filters to the original point

cloud to improve the surface quality [10]. To the knowledge of the author, there is not

enough research about the linear structures in the point cloud analysis. These linear struc-

tures are very thin planimetrically compared with other objects in the point cloud. For in-

stance, in this thesis, the mainly explored point clouds contain the high-voltage powerline

(powerline, in short) which is ubiquitous in both urban areas and countryside. After the

3D reconstruction pipeline has processed the airborne images, the generated point cloud

of the powerline is relatively sparse and noisy. Moreover, because of the optical error

and camera’s joggle, the input images’ distortion and blurriness put a great challenge for

the algorithm to capture and reconstruct the powerlines correctly, i.e. part of the pow-

erline point clouds might lost. As the maintenance and routine check of the powerline

is very important for the society and industry, the accurate vectorization and completion

of the powerlines are necessary and promising. A digital recording of the powerline in

the context of landscape point clouds can lead to many interesting applications, such as

3D power-grid visualization and an autonomous routine check of powerlines in the rural

areas.
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In order to achieve the vectorization purpose of the powerlines, we come up with a

processing pipeline, which provides an end-to-end automatic processing pipeline of the

input point cloud and outputs the vectorization result of the powerline in the point cloud.

The system can mainly be divided into the following four stages:

1. Preprocess: Take the raw point cloud as input, and remove the noisy and erroneous

data points.

2. Determine neighbor points: Build an efficient data structure for the query of nearest

neighbor points of each point.

3. Extract information: Compute the local geometric information (descriptors) of each

point.

4. Vectorization: Based on the local geometric information, the point cloud will be fil-

tered and grouped into line segments, which form the basic components of the pow-

erlines.

For the evaluation purpose and as a lack of dataset with ground truth information

about the powerline in landscape point clouds, we designed and implemented a manual

tool to vectorize powerlines in the point cloud and generate a visually satisfactory com-

pletion of each powerline.

The result of the manual tool will be used as the ground truth to evaluate the result

of the automatic pipeline. The rest of this thesis is organized as follows. Next, related

works about each stage in the pipeline will be summarized in Chapter 2. Chapter 3 covers

the implementation details of the automatic pipeline and in Chapter 4, we introduce the

design and implementation details of the manual tool. In Chapter 5, we show the result of

the manual tool comparing with the result of the automatic pipeline in order to evaluate

the correctness and effectiveness of the pipeline. Finally, we conclude all the work in this

thesis in Chapter 6.
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CHAPTER 2

RELATED WORK

In this chapter, we summarize some related work on the processing of point cloud data,

which are generated from the real-world environment rather than sampled from artificial

3D models. As a result, these point clouds come with some unexpected and uncontrol-

lable type of noisy data and it puts more challenges on the correctness and robustness of

the processing pipeline. Analyzing the point cloud distribution with explicit constraints

(model-driven approach) or implicit constraints (data-driven approach) is the essential

procedure in many systems. However, model-based approaches are generally limited

by the scalability and capability of designing underlying geometric models’ distribution.

Thus, data-driven analysis is a more popular approach in modern systems and is also

used in our work.

The organization of our work follows the order of building components of our pow-

erline vectorization system: i) point cloud denoising; ii) neighbor points determination;

iii) 3D descriptor composition, and iv) data point clustering and curve-fitting of the fil-

tered point cloud. The related work of each component is summarized in the following

subchapters.

2.1 Point Cloud Denoising

Point cloud errors classified by the approaches taken to acquire the 3D scanning data of

the environment fall into the two categories: i) depth sensors’ measurement errors due

to the illumination, surface reflection, and imperfect optical instruments; ii) 3D recon-

struction from multiple perspectives has the problems of the wrong estimation of feature

correspondences, imprecise depth quantization, and inaccurate camera parameters [11].

In order to filter out or rectify the errors in the generated point cloud, the geometric errors

are classified into two types: i) positioning errors, and ii) outlier errors [4]. Positioning
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errors and outlier errors have different characterizations and the denoising algorithms of-

ten need to take both types of errors into account. As positioning errors are related to the

underlying topological structure of the surfaces, outlier errors may influence the accuracy

of topology analysis during the rectifying process of the positioning errors. Therefore,

the first step is to identify and remove the outliers from the original point cloud and fur-

ther processed by the positioning rectification methods to decrease the positioning error.

In the following subsections, outlier removal and positioning rectification algorithms are

explained as follows.

2.1.1 Outlier Removal Algorithms

Outlier errors contain no information about the environment and can be appropriately

modeled with impulse noise. As in 2D image denoising algorithms, impulse noise is

usually identified by statistical-based analysis of the point cloud. More precisely, in the

3D context, outlier points are generally far from the surrounding surfaces and these noisy

points are very sparse in the empty space of the point cloud. In the Point Cloud Library [1],

two types of outlier removal algorithms are provided: i) radius outlier removal which

identifies the outlier points by the number of neighbor points within a fixed radius, and

ii) statistical outlier removal which model the average distance between a target point and

its k nearest neighbors as normal distribution N(µ,σ) and those points whose average

distance exceeds a preset threshold (e.g. µ+ 3σ) is recognized as outliers.

Besides statistical analysis, some researches make use of local distribution of points

to identify outlier noises. A griding based algorithm by [12] divides the point cloud into

hyper voxel spaces and within each voxel, the density of the points and the primary planar

surface is calculated. Thresholds are set to the number of points in the voxels to remove

low-density voxels and the average distance of points to the estimated primary plane to

determine if the voxels are subsurface or scattering outlier points. Inspired by the image

denoising algorithms, a kernel-based clustering approach [13] is adapted to smooth out

the high-frequency impulse noise from the point cloud. Bayesian statistics are applied

by [14] to model the distribution of the point cloud by the local density, estimated surface

curvature, smoothness and priors for sharp features and the model is used to filter out

the outlier points by their posterior probability while preserving the underlying surface
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features.

2.1.2 Positioning Rectification Algorithms

Positioning rectification needs to consider the local topology of each point and some regu-

larization criteria are enforced to smooth or regulate the position of the point. These algo-

rithms usually regard the regularization problem as an optimization problem and mod-

eled the parameters to represent the topological structure of underlying surfaces. Sun et

al. [15] introduce a L0 minimization measuring the sparsity of a solution that could smooth

the surface while preserving sharp features, and it rectifies the point position and normal

direction on the surface with piecewise smoothness assumption. Wolff et al. [5] come up

with an algorithm taking the underlying geometric and photometric consistency as con-

straints on the distribution of point clouds and these constraints applied to achieve better

denoising effects.

Modeling the local distributions of each point as a graph, in which vertices are date

points within a certain radius or of a fixed number and edges represents the spatial re-

lation between points weighted by the Euclidean distance in between, some classical de-

noising algorithms can be revised to graph-based ones to apply to the denoising process

of the positioning error [16]. GSPBox [17] is a practical tool applying graph signal process-

ing methods to resolve the optimization of positioning error. Growing Neural Gas (GNG)

network [18, 19] takes a similar principle to model the topology of the point cloud and the

GNG network is used for data filtering and downsampling by [20]. It is shown in [21] that

the rectified point cloud can yield better object recognition results.

2.2 Neighbor Points Determination

For a query point in a 3D point cloud, finding nearest neighbor points with low time and

space cost is the main focus of point cloud related research. To achieve this goal, spatial

data structures, which partition and organize the 3D space enabling the fast positional

query, are essential and widely studied. K-d Tree [22] and octree [23] are the most com-

mon type of spatial data structures which hierarchically divide the point cloud space into

subspaces and organize these subspaces with data points into a tree structure. Guttman et
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al. [24] propose a dynamic index structure, called R-trees, for database searching and up-

dating which provides more dedicated capabilities for indexing multi-dimensional spaces

and the stored entries are spatial data rather than data points. R-tree is usually applied to

organize geographic information represented in volumetric form. Besides tree structures,

a special encoding method, z-order or Morton-order encoding, could encode the spatial

location into 1D code by a space-filling curve that goes through all the voxels within the

space partitioned by some planimetric distance and this encoding could be applied to con-

struct a graph dedicated for k Nearest Neighbor (KNN) search problem [25]. As Morton

encoding is not as scalable as tree structures to cope with very large-scale point clouds, in

the following part, octree and k-d tree are summarized as follows.

• Octree:

The subdivision method of the octree is a generalization of Quadtree [26] and it splits

the whole space into 8 subspaces by axis-aligned splitting planes. While construct-

ing the octree, a node is further partitioned if the number of data points exceeds the

partitioning threshold and the whole tree depth does not reach the maximum depth

limitation. If a subspace generated is empty or the depth limitation is reached, the

node corresponding to this cuboid will not be further split up.

• K-d tree:

Similar to the octree, a k-d tree also splits the space by axis-aligned planes while

it only divides the space into two subspaces with special strategies. The splitting

plane is commonly placed at the midpoint of the longest dimension of the current

space. Thus, a k-d tree is a binary tree with similar stopping criteria to the octree

with regard to the construction procedure.

Based on the octree, Drost et al. [27] propose to use Voronoi tessellation as splitting cri-

teria to avoid the prohibitive backtracking expense and claim to achieve almost constant

time query time through hashing leaf nodes at the cost of longer data structure construc-

tion time. Elseberg et al. [28] reorder the point cloud to efficiently address a point location

in an octree. Behley et al. [29] reduce the time complexity of octree fixed radius neighbor

search by introducing subtree pruning strategies in the octree traversal and reindex the
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point cloud to store only range index of each node to significantly reduce the space cost

of the octree. Moreover, many pieces of research [30, 31, 32] have explored the practical

and industrial application of the octree to handle with landscape scanning point cloud

segmentation problem.

After constructing the data structure, query algorithms are studied to extract the near-

est neighbor points of the query point. This nearest neighbor search algorithms has three

categories [33]: i) kNN search gives the exactly k points nearest to the query point as result;

ii) fixed radius search retrieves all the neighboring points within a fixed distance; iii) range

search combines the previous kNN search and fixed radius search that retrieves k nearest

neighbor points within a preset maximal distance. According to the summarization done

by [33] about the available libraries supporting NSS, Flann [34] (fast library for approxi-

mate nearest neighbors) and ANN [35] (approximate nearest neighbors) are the libs that

satisfy our need of both kNN search and fixed radius search. Flann is based on the k-d tree

structure and provides fast-query with comparable smaller space requirement if properly

set up the parameters based on the characteristics of the given point cloud. Moreover, the

Flann module provided by OpenCV [36] could construct a set of randomized k-d trees

to support searching in parallel, which significantly reduces the time we need to process

every point in the preprocessed point cloud.

2.3 3D Descriptor

The quality of the extracted 3D descriptors or 3D features has a significant effect on the

performance of the whole system. A discriminative and powerful 3D descriptor should be

able to capture the underlying geometric information while keeping translation-, scaling-

and rotation-invariant at the same time [7]. 3D descriptors fall into the following three

categories:

• Global-based descriptor:

Use a single descriptor to describe the whole 3D structure of the input point cloud. It

observes the point cloud as a whole geometric entity and is useful for the point cloud

comparison and matching tasks [37], which is not suitable for the segmentation and

filtering tasks that this thesis focuses on.
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• Local-based descriptor:

On the contrary to global-based descriptors, a local-based descriptor is derived from

the neighbor points of each point in the point cloud. Comparing with the former,

local-based descriptors are robust to clutter [38] and occlusion but sensitive to the

noisy data points in the neighborhoods [39].

• Hybrid-based descriptor:

Combine the ideas of both local-based and global-based 3D descriptors to make the

most of the advantages of both.

3D local descriptors encode the local geometric information such as normals and cur-

vatures, and are suitable for our system’s point cloud segmentation and filtering task. In

the later part of this section, we focus more on the state-of-art 3D local descriptors and

they can be roughly categorized into two types:

• Shape contexts:

3D shape contexts (3DSC) [40] are captured by statistical analysis of neighbor points

lying in the support region, which is further divided into equal-sized radial-aligned

bins (similar to the division of longitude and altitude in 3D space). Spherical support

is defined by the estimated surface normal and radial distances to the target point

and the descriptors capture the geometric information through a weighted sum of

points in the spherical support. Since the local reference frame is not properly de-

fined in the 3DSC, the unique shape context [41] improves it by adding a unique

local reference frame. The eigenvalue decomposition of the covariance matrix of

neighbor points’ local coordinates gives three eigenvalues. The two larger eigenval-

ues’ corresponding eigenvectors and the cross product of these two vectors together

form the unique local reference frame.

• Histograms:

Auguelov et al. [42] purpose the distribution histogram capturing the point cloud

distribution on an estimated plane through a weighted sum of the projection dis-

tances of neighbor points to the target point. Similarly, the differences between the
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estimated normals of neighbor points and the target point are collected to a his-

togram representing the local curvature [43]. Similar to 3DSC’s division of support

spherical region, the intrinsic shape signature [44] is the weighted sum of the points

in each bin while the spherical coordinate system is defined by the first two eigenvec-

tors of principle component analysis (PCA) analysis and their cross product. Point

feature histogram [45] collects the relationships between point pairs of neighbor

points and the target point and these relationships are quantified by three angular

features and euclidean distances.Spectral histogram [43] combines the eigenvalues

of the covariance matrix in a local reference frame and comes up with a bin-size

based on the eigenvalues splitting the support neighborhood into multiple sectors

and accumulates the number of points in each sector to form the spectral descriptor.

As we can see, there are many common parts between the computation of local shape

context and the collection of histograms. Most of these algorithms capture the underlying

topology by setting up a local reference frame. This reference frame is conventionally

set up by eigendecomposition within the support region. The local covariance matrix

analysis gives many useful features such as the surface normal, surface curvature, and

the eigenvectors of covariance matrices are used to build the local reference frame [46].

For a set of local points P = {p1, ....,pn} (pi ∈ R3) obtained by kNN search of n nearest

neighbors, the covariance matrix of P is written as:

C(P) =
∑
pi

(pi − p)(pi − p)
T (2.1)

where p is the the mean of the points p =
∑n
i=1 pi/n. The eigenvalues and eigenvectors

can be computed by the singular value decomposition of C(P), i.e. C = VDV−1, where D is

a diagonal matrix containing the eigenvalues {λ1, λ2, λ3} and V’s colume vectors {v1, v2, v3}

are the eigenvectors corresponding to each eigenvalue. As C(P) is a symmetric semi-

positive definite matrix, λi’s are larger than or equal to zero. We can sort the eigenvalues

in decreasing order λ1 > λ2 > λ3 > 0 and different settings of eigenvalues describe

different point distributions. For instance, if λ1 � λ2, then it means that local points have

a line like distribution in the direction of v1 and if λ1 ≈ λ2 � λ3, then local points form a

planar structure with normal in the direction of v3. In order to quantify the degree of how
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the point cloud distribution is close to a linear, planar or spherical structure, Lin et al. [47]

propose three scalars by linear combination of the eigenvalues:

 linear

planar

spherical

 =

(λ1 − λ2)/λ1
(λ2 − λ3)/λ1
λ3/λ1

 (2.2)

Kriegel et al. [48] show that PCA is sensitive to outliers and un-uniform point cloud

density and they propose an analyzing framework increasing the robustness of PCA com-

putation. This framework modifies the covariance matrix C(P) by re-weighing the neigh-

bor points i.e.

C(P) =

∑
pi
wi(pi − p)(pi − p)

T∑
wi

(2.3)

where wi is the weight of each point. Besides different weighing strategies, they also

come up with the dynamic size of the support region for neighbor searching. Mitra et

al. [49] purpose that the neighbor size has a mathematical correlation with the noise-level,

curvature of underlying manifold, density and distribution of data points and a heuristic

searching problem has been posed to find the proper neighbor size to minimize the er-

ror of PCA analysis. Researchers [50] have come up with some re-weighing solution to

resolve the problem caused by local density bias in the point cloud with the help of esti-

mated plane projection and Voronoi diagram. And Lin et al. [47] purpose to use Gaussian

distance rather than Euclidean and Hausdorff distances as the former provide better out-

lier resistance through assigning smaller weights to points far away from the geometric

median.

Apart from weighing the points in the covariance matrix construction stage, some

pieces of research [51, 52, 53, 54] focus on selecting within neighbor points to generate

a robust estimator of multivariate data points in various dimension. Among these works,

minimum covariance determinant (MCD) is commonly used which aimed to find h screen

data points out of n neighbor points that lead to the lowest determinant of the covariance

matrix. FAST-MCD [55] is a fast and effective algorithm that could handle large dataset.

The default value of number of screen data point is h = (n + p + 1)/2 where p is the
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dimensionality of the data space. This algorithm starts from many randomly selected

subsets and these subsets are independently applied the iterative point interchange pro-

cess, in which points leading to the reduction of determinant value are included and those

increases the determinant value are excluded from the screen set. The result of MCD is

promising while the complexity and prohibitive running time remain to be problems even

with the help of the FAST-MCD algorithm.

2.4 Data Point Clustering and Curve-Fitting

In order to extract the structure from the preprocessed point cloud, model-driven and

data-driven approaches [56] based on the geometric constraints are developed. Model-

driven approaches employ some predefined model primitives. For instance, intersection

lines, height jump edges, and planar surfaces are combined into vector maps for models

of buildings in the point cloud in the urban environment [57]. However, model-driven

approaches are limited by the finite number and the degree of complexity the predefined

model and data-driven approaches analyze the point cloud distribution is more feasible

and portable [56]. In most data-driven approaches, data points are clustered based on

their geometric features. For example, points sampled from a building surface are more

likely to be coplanar and other points sampled from tree canopies are scattering around

the tree location without a definitive planar surface. In this thesis, we employ clustering

approaches on the preprocessed point cloud, in which the local descriptor of each point

is available, and try to fit a linear curve model into each segment. Furthermore, the ob-

tained 3D line segments can be grouped by the geometric model of the powerline and

eventually result in the vectorized powerline structures from the point cloud. In the fol-

lowing subsections, several popular data point clustering and curve-fitting approaches

are summarized.

2.4.1 Connected Component Labelling

Connected component labeling (CCL) [58] is often used for grouping neighbor pixels in

image processing and Lohmann[59] revised the algorithm to adapt in 3D voxel grids. The

main idea of this algorithm is the planimetric proximity of points determines the final
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grouping result, i.e. points closing to each other are more likely to be in the same group.

In one practice of octree-structured voxel space by [30], original point clouds are stored in

octree and each node of the octree is a voxel containing neighboring points. Each voxel

has 26 neighbors and can be easily located in the octree structure [60] to extend the space

sharing one common label. By apply the CCL algorithm, no geometric model is defined

for the underlying point cloud and only the proximity is used as a clustering criterion.

Therefore, within each labeled group, further segmentation methods should be applied to

ensure each smaller group share common geometric features.

2.4.2 Hough Transform

Hough transform [61] is a commonly applied technique used to extract features within a

parameter space. In this space, accumulators are set to find the local maximum and each

maxima has a one-to-one mapping to the target features in the original space. Duda et

al. [62] first propose to use the Hough Transform to detect lines and general curves in 2D

images. All straight lines in R2 together form a family of lines defined by two parameters,

which means that any line l can be represented by a single point in the parameter space

and the mapping is:

l : x cos θ+ y sin θ = ρ 7→ (θ, ρ) (2.4)

Similarly, there is a dual property that a point (x,y) in R2 is mapping to a sinusoidal

curve in the parameter space θ-ρ

For a set of n points {(x0,y0), ..., (xn,yn)}, if there is a straight line l in R2 passing

through all of them, then in the parameter space θ-ρ all the sinusoidal curves should

intersect at the point corresponding to the duality of the line l. Therefore, the detection of

line structure in the original point set is equivalent to find local maximum in the parameter

space. The general transform approach can be extended to curves other than straight

lines [62] and the same voting process can be done in the parameter space.

O’Gorman et al. [63] purpose to use gradient direction of edges to reduce the com-

putation time and the number of useless votes. And kernel-based hough transform [64]
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uses an oriented elliptical-Gaussian kernel modeling the noisy information from the orig-

inal space and it improves the robustness of Hough line detection by reducing spurious

lines. Hough transform can be further extended to detect planes and cylinders in the 3D

point cloud in similar transformation [65], while in higher-dimensional parameter space,

heuristic search is required to make the algorithms feasible [66].

2.4.3 Random Sample Consensus

Random Sample Consensus (RANSAC) [67, 68] is a robust model-fitting algorithm that

is resistant to outliers. It is a randomized iterative approach that the more iteration is

applied, the higher probability that the outliers are excluded and the data fit the model

better. This algorithm is outlier robust because outliers are excluded from the final data to

fit the model i.e. outliers have not contributed to the result. In general, in each iteration

RANSAC algorithm consists of two steps:

• Hypothesis generation: Randomly choose a subset of data from the dataset, and it

the model with this subset of data.

• Hypothesis verification: Make use of the model parameters calculated in the hypoth-

esis step to evaluate the whole dataset. A threshold τ is predefined for the selection

of outliers: if a data point’s error is larger than τ, then it is regarded as an outlier.

The final set of inliers is called the consensus set and a common stop condition for

the RANSAC algorithm is the consensus set has enough inliers. Therefore, instead of

always randomly select new subsets to try to screen the best model, another parameter

d is introduced as a threshold determining if a subset fits the model M good enough i.e.

if the number of inliers in the current subset is larger than d. Then a new set of model

parameters M ′ will be calculated from all the positive data points in the whole dataset

that fits model M. Comparing the error rate of the best model M and M ′, and update M

byM ′ if the later has a smaller error rate.

Recent research starts from optimizing both steps of the RANSAC algorithm [69, 70, 71]

to reduce the verification test and save the computation resources, while [72, 73, 74] use

smart strategies to cover more inliers during the hypothesis generation step. Td,d test [69]
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reduces the verification time by introducing a pre-verification set, which is used to ver-

ify the model first, the rest data are only used if all the pre-verification data are inliers.

Bail-Out Test [70] and WaldSAC [71] make use of the probabilistic model to evaluate the

hypothesis on the verification step on fly and apply early termination to the verification

step. Preemptive RANSAC [75] parallelizes the scoring procedure by generating M hy-

potheses beforehand. Then only some of the high scored hypotheses are selected to be

evaluated on the next subset of data points. f(i) defines the number of hypotheses in each

iteration is kept where i = 1, ...,N, and N is the number of iterations:

f(i) = bM2−
i
B c (2.5)

where B is the size of verification subset. The stop condition is f(i) = 1 or N itera-

tions have finished. Preemptive RANSAC is very powerful and achieves robust real-time

structure and motion estimation.

RANSAC is a powerful algorithm generating robust parameters for a given model.

However, it has the limitation that it only works well on the dataset that contains outliers

and one group of inliers of the model. For example, if a point set is sampled from a set of

line segments in R2, then RANSAC ends with bad model parameters as it is not able to

model multiple instances at the same time. On the contrary, Hough transform can easily

handle the mixing of line data points, but the computation time and space cost of Hough

transform is much higher.

2.4.4 Curve Fitting

Curve fitting [76] aims to construct a curve model that fits the input data well i.e. min-

imizing the error between model estimation and real data point. This model serves as

the summarization of the existing data point (smoothing) and a prediction of the missing

data (interpolation). In the context of modeling structures in the point cloud, three types

of algorithms are summarized below and we analyze data points in R2 for simplicity as

these algorithms can be extended to R3 space.

• Least-squares regression:
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It derives the model y = f(x) describing the relationship between x and y coordi-

nates of the input data points and minimizing the discrepancy between data points

and the model estimations. In general, a polynomial regression [77] model is

yi = a0 + a1xi + a2x
2
i + ... + amxmi + ei for (i = 1, 2, ...,n) (2.6)

{a0,a1, ...,am} is the parameters of the model denoted as ~a and {e0, e1, ..., em} is the

errors. The model can be written in matrix form as:
y1
y2
...
yn

 =


1 x1 x2

1 ... xm1
1 x2 x2

2 ... xm2
...

...
... . . . ...

1 xn x2
n ... xmn



a0
a1
a2
...
an

+


e1
e2
...
en

 (2.7)

~y = X~a+~e (2.8)

Then the parameters can be derived by

~a = (XTX)−1XT~y (2.9)

which requiresm < n for matrix XTX to be invertible.

For nonlinear regression, use Gauss-Newton method to estimate the Taylor expan-

sion of nonlinear functions.

• Interpolation:

Polynomial interpolations usually derive the middle data by a linear combination

of neighboring or whole input data points. For example, the Lagrange interpolating

polynomial all data points are involved:

f(x) =

n∑
i=0

n∏
j=0
j 6=i

x− xj
xi − xj

f(xi) (2.10)

while in Spline interpolations only the neighboring points are involved. For exam-

ple, the linear spline is a group of piecewise straight lines:

f(x) =


f(x0) +

f(x1)−f(x0)
x1−x0

(x− x0) x0 6 x 6 x1

f(x1) +
f(x2)−f(x1)
x2−x1

(x− x1) x1 6 x 6 x2
...
f(xn−1) +

f(xn)−f(xn−1)
xn−xn−1

(x− xn−1) xn−1 6 x 6 xn

(2.11)
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Lagrange interpolation gives a good model covering all data point but it returns a

nonlinear model and Spline interpolation is computationally cheap than Lagrange

interpolation but still returns nonlinear model, which is not desirable for our task.

• Fourier Transform approach:

Discrete Fourier Transform can be applied to represent the input data points’ model

function by a set of discrete values which can be regarded as the weight of dif-

ferent trigonometric components (each component corresponds to a specific fre-

quency) [78]. A low pass filter can be used to filter out the high frequency com-

ponents of the model as these components always represent the noise for a linear

structure.

Comparing the above three methods, we choose the combination of the least-square

regression approach and RANSAC iterative process to fit the given data points into the

target curve model. To represent the linear structures in the 3D point cloud, we need a

parametric vectorization that represents the distribution of these data points. This repre-

sentation can be an equation defined in R3 with some constraints (e.g. continuity, curva-

ture, angle, spacial span), or a combination of R2 descriptions and constraints, which is

explained in detail in Chapter 3.
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CHAPTER 3

IMPLEMENTATIONS

In this chapter, we present the detailed implementation of our processing pipeline, which

has the input of a raw point cloud generated from the 3D reconstruction pipeline of multi-

perspective images and the output of the target structures’ vectorization result. We focus

on a real-world problem of digitizing the powerlines in some landscape point clouds.

These powerlines follow the geometric model of catenary, which is visually approximate

to the parabolic arch [79]. And the span of a segment of powerline is usually long enough

to use a parabolic curve to model it. The whole system mainly consists of four stages: i)

point cloud denoising; ii) point cloud downsampling; iii) target points filtering; and iv)

clustering and curve-fitting to generate vectorization result.

3.1 Raw Point Cloud Analysis

The raw point cloud of the landscape are comparably large and usually stored in sepa-

rate files. For example, the point cloud shown in Figure 3.1(a) contains twenty million

data points (XYZ vertex coordinate and optional RGB vertex color) of file size around five

hundred megabytes. To gain a better understanding of the point cloud, the z-coordinate

of each point (i.e. height of each point) is color encoded in Figure 3.1(b). Point clouds

generated from the image-based 3D reconstruction algorithm are different from the laser-

scanned point cloud data in many perspectives. The former’s point distribution is non-

uniform that areas of interest often contains much more data points and the result point

cloud is comparably dense to the laser scanned result. Moreover, with the limitation

of data sampling hardware and feature point extraction algorithm, the generated point

clouds might contain more mistaken data, such as multiple layers of points for a single

surface or loss of thin structures. Therefore, the first step of our work is to analyze the

input point cloud.
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(a) Raw point cloud

(b) Height Map

(c) Density distribution of raw point cloud (radius = 0.03)

(d) Density distribution histogram

Figure 3.1. Input point cloud visualization result
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Points belonging to vegetation (e.g. tree and grassland) are usually of multiple lay-

ers. For a point belonging to vegetation, neighbor points are not distributed in a fixed

geometric model which might describe a surface or line structure. These data points are

densely distributed while rarely containing useful information for resolving our task. As

a result, the computation time spending on these points are long and wasted. Therefore,

data downsampling 3.3 approach will be applied to reduce the redundancy and density

of points belonging to vegetation. The density distribution of the raw input points are

visualized in Figure 3.1(c), the Blue-White-Red color encoding methodology is applied

to make a visual contrast of biased density distribution within the point cloud. High-

density points are mainly distributed around the vegetation which has multiple layers as

mentioned above. On the contrary, low-density points belong to the marginal area and the

thin structures of the model, and the later is of our interest. And this visual analysis com-

plies with the histogram of density distribution in Figure 3.1(d). In the histogram, each

bin accumulates the number of points who have a specific number of neighbors within a

certain distance and the diagram shows mainly two peaks corresponding to low-density

points and high-density points. The peak of high-density points is intuitive since many

high-density points are neighbor points of each other. The peak of low-density points

is related to the marginal area of the model that surrounds the area of interest and we

presume that there are enough margin in the given model. However, this density peak

analysis is not usually accurate as the underlying geometric models of the landscape are

various and of high uncertainty. A more detailed analysis of local distribution is required

to classify the data points.

3.2 Outlier Removal

In order to remove the outlier data points, we apply three different types of outlier re-

moval algorithms.

• Statistical outlier removal: for a target point p, this algorithm builds a k-d tree to

search kNN neighbor points {pn1, ...,pnk} and calculate the average distance davg =∑k
i d(p,pni)/k of the neighbor points to the target. The average distance of each

point in the point cloud to their neighbors are combined to fit a Normal distribution
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model N(µ,σ):

µ =

N∑
i

davg,i (3.1)

σ = (

N∑
i

(davg,i − µ)
2)

1
2 (3.2)

A point p is an outlier iff davg > µ+ cσwhere c is a constant real number indicating

the density distribution’s uniform degree. In our example point cloud shown in

Figure 3.1(c), the value of c is will be a large number since the density distribution is

biased.

• Radius outlier removal: similar to the previous algorithm, it builds a k-d tree to

locate the neighbor points within a fixed radius r and we simply accumulate the

number of neighbor points denoted asm. A point p is an outlier iffm < c and c is a

constant real number indicating the threshold to determine outliers.

• Voxel-based outlier detection: the whole point cloud space is divided by axis-aligned

cutting planes forming the voxel grid (Figure 3.2). Within each voxel, the number

of data points is accumulated and more analysis can be done through treating each

voxel independently. For example, the primary plane within the voxel can be de-

termined, and based on the distances of these points to the primary plane can we

determine if these points belong to a scattering, planar, or linear structure.

The statistical and radius outlier removal algorithms are usually applied to the laser-

scanned point cloud whose density distribution is closer to a uniform distribution. And

the determination of neighbor points of every point within the raw point cloud can be

computationally expensive since there are tens of millions of data points. The third al-

gorithm generates a voxel grid and the neighbor points are points within the same voxel

cell. Therefore, the computation load is comparably light and it can be parallelized easily.

Moreover, the statistical analysis of average distances and the number of points within

a voxel can also be used as outlier determination criteria for voxel grids. The compari-

son between these three algorithms is summarized in the Table 3.1 and the outliers are

annotated as red points in Figure 3.3.

21



Table 3.1. Performance of the outlier removal algorithms

Outlier Removal Algorithm Runtime (#CPU cores) Comment

Statistical outlier removal 58.213s (8 cores) Not suitable for non-uniform point

cloud. The dense portion has a great

effect on the sparse portion leading to

bad outlier classification result

Radius outlier Removal 491.421s (8 cores) Radius nearest neighbor search within

a non-uniform distributed point cloud

has very high computation load as the

dense part might observe thousands of

points as neighbor points

Voxel-based outlier removal 2.508s (1 core) Achieve similar outlier classification

effect to the radius outlier removal

while consume much less computa-

tional resources
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Figure 3.2. Voxel grid (voxel-size = 0.03)

After comparing these outlier removal approaches, we apply the voxel-based algo-

rithm in our final pipeline. With additional operations applied within each voxel, the

downsampling of the point cloud can be achieved as shown in the next section 3.3.

3.3 Point Cloud Downsampling

After removing the outliers in the point cloud, the next step of recognizing the linear

structures from the point cloud is to do local dominant distribution analysis. However,

as mentioned in previous section, the direct computation of local features is computation-

ally expensive and not efficient since some densely located data points sharing almost the

same neighbor point set, which leads to redundant computation of local features. To re-

solve the redundancy, we decide to reduce the density of certain parts of the point cloud,

specifically those densely located points, and we denote this step as point cloud down-

sampling.

Making use of the accumulation result in the previous section, we have a rough esti-

mation of density distribution within the voxel grid. This density distribution is an ap-

proximation to the real kNN based statistical accounting result as shown in Figure 3.1(d).

The histogram of the approximated density distribution is shown in Figure 3.4(a). We

extract the prominent peaks and valleys (as annotated by 4 and 5 in Figure 3.4(a)) from

the histogram through the swiping window analysis to find the local maxima and minima
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(a) Statistical outliers (k = 100, threshold = 3.0 * std)

(b) Radius outliers (radius = 0.015, threshold = 20)

(c) Voxel-based outliers (voxel-size = 0.03, threshold = 20)

Figure 3.3. Visual comparison of the three outlier determination algorithms
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within a window. If the peak is not unique, it indicates that there are high density voxels

that requires downsampling. For voxels belonging to the bins after the first valley in the

diagram, a downsampling profile is calculated for each of them to map to a bin between

the first peak and valley. As shown in the Figure 3.4(b), we defines a linear mapping be-

tween the bins in Region A and Region B, and the downsampling profile can be expressed

as the number of result points or the probability of each point being selected:

Na_i : the number of voxel within the i-th bin in Region A

Nb_j : the number of voxel within the j-th bin in Region B

s : the number of bins in Region A

t : the number of bins in Region B

peak : the index of the bin of the first peak

valley : the index of the bin of the first valley

density(ind) : the density of the ind-th bin

Prob(a point in i-th bin in A being selected) =
density( t

si+ peak)
density(i+ valley)

(3.3)

After downsampling the voxel points with probability specific in the above equation,

the new density distribution is shown in Figure 3.4(c) and the downsampling result is

shown in Figure 3.4(d). If there is still more than one dominant peaks within the density

histogram, the above downsampling procedure can be applied iteratively. This down-

sampling approach keeps the low-density portion of the input point cloud not changed as

the linear structure of our interest falls in this region. Meanwhile, the high-density por-

tion of the point cloud can be iteratively processed such that the density of those voxels

are of value around the low-density peak, which suggests that voxels of surface and lin-

ear structure can still represent the underlying topology while other voxels of vegetation

keep random distribution. As a result, the redundant calculation spent on vegetation and

surface points are greatly reduced as shown in Table 3.2.
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(a) Voxel-grid density distribution histogram
voxel-size = 0.03, #bins=100, x-axis is the density bins

and y-axis is the number of data points in each bin

(b) Linear mapping between Region A and Region B

(c) New density histogram after downsampling

(d) Visualization of the density distribution (colors
encode the density values)

(e) Height map of the downsampled point cloud
(colors encode the height)

Figure 3.4. Voxel-based point cloud downsampling
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Table 3.2. Voxel-based downsampling

Parameter Name Value Comments

Peak Locations [90, 2370, 2790] ± 30 Corresponding density value of each location

Valley Locations [1170] ± 30 -

Region A size 59.9% The percentage of high density points to ap-

ply the downsampling

Region B size 33.5% The percentage of low density points remains

unaffected

Downsampling rate 40.1% The percentage of points remain after the

downsampling process

Running time 8.499s Random selection and memory access time

for downsampling

3.4 Local Features Computation

After reducing the redundancy in the original point cloud, the next step is to composite the

local features which serve as critical parameters for segmenting and classifying the point

cloud in future modules. In order to compose a more accurate description of the local

topology around each point, we should not use a voxel grid estimation of the neighbor

relationship, and instead, we apply nearest neighbor search to determine a set of a limited

number of points within a predefined searching radius around each target point. This

searching strategy is called hybrid-NN (a combination of both radius NN search and kNN

search), which is supported by the Flann algorithm.

At this stage, we make use of the open-sourced C++ library of Flann to get the indices

of each point’s neighbor points. The construction time of the Flann data structure is shown

in Table 3.3 and the hybrid-NN searching time is greatly reduced by the parallelization of

each point’s query as shown in the table.

After the determination of neighbor points, we analyze the local data points’ distri-

bution by calculating the covariance matrix Cov, which embeds the spatial relationship

between each point. To extract these information, we apply the eigendecomposition to
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Table 3.3. Local Feature Computation

Parameter Name Value Comments

Flann parameters leaf-size: 30 The searching radius is comparably smaller

than voxel size and a smaller leaf-size in-

creases the construction time of a k-d tree

data structure

data structure: k-d tree The most commonly used data structure for

3D or higher dimensional data points. Com-

paring with octree, it provides more flexible

splitting strategy and the resulting tree struc-

ture is more balanced

radius: 0.03 & NN size

limit: 30

Hybrid searching parameters. Search radius

is 1/10 voxel size in density estimation pro-

cess.

Input point cloud size 850 million The input point cloud is the downsampling

result from previous stage and all the points

belonging to low density points are kept. The

downsampled point cloud could still be ap-

plied the uniform downsampling strategy to

further reduce the density and computational

load of the current local feature computation

stage.

Flann construction time 11.004s (1 core) -

Local feature computa-

tion time

310.13s (8 cores) -
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Cov and obtain three pairs of eigenvalues {λ1, λ2, λ3} and eigenvectors {v1, v2, v3}. Assume

these eigenvalues are sorted in descending order λ1 > λ2 > λ3. We define the parameters

to quantitatively measure the underlying point distributions similar to the Equation 2.2:

linearity =(λ1 − λ2)/λ1

planarity =(λ2 − λ3)/λ1

scattering =λ3/λ1

These three parameters are designed to have the total sum value one and their names

suggest the topological distributions that they are measuring. In our pipeline, we mainly

make use of linearity to extract the linear structures and the other to are used as auxiliaries.

However, there is a case that even the neighbor points form major distribution, the target

point does not belong to the local structure, which can be regarded as a kind of stubborn

outlier for the local structure. Additional evaluation of the target point to the local struc-

ture is required and it is implemented through checking the distance of the target point

to the centroid of local data points: if it is within a certain threshold, the target point is

regarded as inlier and classified as the local structure suggested. The threshold, for exam-

ple, can be a multiple of the standard deviation of the point cloud or the distance contour

weighted by eigenvalues.

Through visualization of these three parameters in the Figure 3.5, we encode the value

by a Blue-White-Red color scheme, in which values close to zero are more bluish and

those close to one are more reddish. This visualization result provides firm support to the

feasibility of our pipeline to extract linear structures in the point cloud as there are clear

margins between linear structures and other topological structures.

3.5 Clustering and Curve-Fitting

3.5.1 Clusters of Line Segments

At this stage, we have the point cloud filtered by the degree of local linearity. In order

to get the vectorization result of all the separated linear structures, we gather the data
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(a) RGB (b) Linearity

(c) Planarity (d) Scattering

Figure 3.5. Visualization result of local features. The color encodes the value of each
parameter with blue representing zero and red representing one.

points belonging to the same line for further curve-fitting. The clustering approach is
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summarized in Algorithm 1 and explained in detail as follows.

Algorithm 1: Clustering the data points into line segments
Data: For each data point p:
p.xyz denotes the xyz-coordinate
p.v dentoes the primary direction of eigenvectors
p.label denotes the cluster p belongs to (default is -1)
Result: Clusters C of filtered data points
Let β be the predefined threshold for angle difference;
Let η be the predefined threshold for cluster cores;
Let Q be the queue for cluster cores;
Push all points into a stack;
Construct k-d tree T for RNN search in r;
while stack is not empty do

Q⇐ stack.pop();
while Q is not empty do
p⇐ Q.dequeue();
p.label⇐ C.size();
nbs⇐ T.rnn(p, r);
for nb in nbs do

if nb.label is − 1 then
θ⇐ arccos(p.v,nb.v);
if θ < β then
nb.label⇐ p.label;
stack.remove(nb);
nb_new⇐ T.rnn(nb, r);
if nb_new.size() > η then

Q.push(nb_new);
end

end
end

First of all, we prepare the data points to be clustered. Each point contains the in-

formation about the local estimation of eigenvectors, in which the first eigenvector is the

primary direction of local distribution. Construct a k-d tree for the radius nearest neigh-

bor search by XYZ-coordinate of each point. Then, we adopt a clustering approach similar

to the DBSCAN algorithm with some modifications. Randomly select a point from the fil-

tered point cloud as a seed and find all the neighbor points within a predefined radius. For

these neighbor points, we check the probability that a point belongs to the same group of

the seed point by measuring the angle difference between their first eigenvectors as shown

in Figure 3.6(a). These points in the same group are labeled the same, and if their neigh-
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bor points number exceeds a threshold, these points are pushed into the waiting queue

and become the seed of the next iteration. Repeat the previous process until we finish the

processing of the waiting queue and we start the next cluster by a random selection of a

seed point again. After all the data points are labeled, we filter out the small clusters by

the number of points inside and the remaining clusters are the input of our curve-fitting

stage as shown in the Figure 3.6(b).

(a) Modified DBSCAN clustering algorithm
(point colors encode the label of clusters)

(b) Clusters filtering by the number of points

Figure 3.6. Point cloud clustering result

3.5.2 Line Segments Grouping

In order to get the vectorization result of the powerlines from the line segment clusters,

we model the underlying geometric structure of a piece of the powerline to be a parabolic

curve as explain at the beginning of this chapter. Moreover, since a piece of powerline may

span a long distance and the middle point cloud may already be lost, we should not use

each cluster separately to do curve-fitting. Instead, we try to fit every two line segment

clusters into a parabolic curve and verify our estimation by computing the mean square

error of the fitted curve comparing with both line segments (explained in detail in the next

subsection 3.5.3).

To reduce the useless curve-fitting of line segments, we first group the candidate line

segments together. Two line segments belong to the same piece of powerline, only if they

lie on the same profile. That to say, the projections of these line segments onto the xy-

plane are colinear as shown in Figure 3.7(a). Therefore, we estimate the projection line

of each line segment and group those segments who are colinear (visualized in Figure
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3.7(b)). In each group of line segments, all the points lie on the same vertical plane, and

this cross-section is visualized in Figure 3.7(c).

(a) Projection of line segments on xy-plane (b) Grouping of projected line segments

(c) Cross-section example (d) Curve-fitting result of the cross-section
example

Figure 3.7. Visualization of the grouping and curve-fitting result at each stage

3.5.3 Cross-Section Curve-Fitting

The curve-fitting and verification process is applied within each group to get every piece

of the powerline in the cross-section and the resulting parabolic curve is shown in Figure

3.7(d).

It is a general phenomenon that there are multiple powerlines in the same vertical

33



plane, which limits the usage of the RANSAC algorithm to model the parabolic curves in

the cross-section. Therefore, as shown in Algorithm 2, we propose to use a priority queue

to store the line segments with reference to the span of each segment. At each stage, we

pop the longest target segment from the queue and try to find all other line segments who

could fit a parabolic curve together with the target with a satisfactory error rate on both

the target segment and itself. This error rate is measured by the mean squared error of the

fitted curve and the data points within each line segment and the curve-fitting algorithm

is the RANSAC algorithm as there is only one fit of a parabolic curve between every two

segments. Until the queue is empty, we select the parabolic curve whose total underlying

line segments’ span is long enough (comparing with the longest parabolic curve) to be the

output parabolic curves.

Algorithm 2: Curve-fitting for line segments
Data: For each line segment l:
l.span denotes the span of l
Result: Fitted parabolic curves L
Let Q be the priority queue storing all the line segments;
Let e be the error rate threshold;
while Q is not empty do
target⇐ Q.pop();
Create an empty array A storing line segments for the target line;
for l in Q do
fitted_curve⇐ LeastMeanSquareCurveFitting(target, l);
Error_1⇐MeanSquaredDifference(target, fitted_curve);
Error_2⇐MeanSquaredDifference(l, fitted_curve);
if Error_1 < e and Error_2 < e then

Q.remove(l);
A.push(l);

end
Fit a parabolic curve with all line segments in A and store into L;

end

The parameters of a parabolic curve and the position of the cross-section together form

the vectorization result of a single piece of the powerline. The whole pipeline of extracting

the vectorization result of the powerlines from the input point cloud can be illustrated in

the following flow chart 3.8.
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Figure 3.8. Flow chart of the pipeline
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CHAPTER 4

A TOOL FOR VECTORIZATION OF
POWERLINES

4.1 Overview

For large-scale 3D point cloud of landscape, there is a huge number of data points to

process. Moreover, a 3D editing tool is much more complex than an image editing tool on

the 2D plane since the interaction with the 3D scene is not only ambiguous with the depth

of the scene but also affected by the FOV of the viewing camera. As a result, we decide to

build a manual tool that is a hybrid of 3D and 2D modes.

4.2 3D Editing Mode

First of all, to improve the frame rate of rendering the point cloud in 3D interaction mode,

we have to reduce the number of points. A general approach to reducing the number

of points is to build a voxel grid and use a single voxel point to represent all the points

locating in the voxel. The voxel-size is much smaller than the one we adopted in the

previous downsampling process as at this stage we want to reduce the number of points

to render rather than to create pseudo-neighbors for the point cloud. Moreover, in order to

improve the overall performance of the 3D editing part, we build the interaction system

by C++ instead of Python, which wastes too many resources on composing the built-in

data structures. This 3D editing tool provides the ability for the user to draw a polygon

in the screen to select all the voxels inside the polygon from the current camera view as

shown in Figure 4.1.

36



(a) Selection polygon for the data points of interest

(b) Points of interest (in red)

Figure 4.1. 3D editing mode
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4.3 2D Editing Mode

The original data points’ indices contained by each voxel are then recorded. With the help

of the 3D editing tool, we are able to extract the data points of the powerlines without the

appearance of the lower ground and vegetation. Then, as we mentioned in the previous

chapter, data points in the same powerline have the property that the projections of them

are colinear on the xy-plane. To make use of this property, we remove those data points

below the powerlines. Then we are able to use a 2D editing tool to select the cross-section

of powerlines as shown in Figure 4.2(a).

(a) Cross-section selection on xy-plane (b) Cross-section plane view of data points and
polygon selection tool for each curve

Figure 4.2. 2D editing mode

4.3.1 Cross-Section Selection

In the canvas of the 2D editing tool, we plot the projections of the selected points on the

xy-plane. In this plot, the cross-section of each powerline is clearly shown and we provide

a selection tool for the user to select one cross-section at a time with a clear beginning and

ending point as shown in Figure 4.2(b).
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4.3.2 Vectorization of Points in the Cross-Section

Considering the slight error between the user drawn cross-section line and the true line

position that the points’ projections lie on, we fit the selected points’ projections into a

straight line on the xy-plane, which is regarded as the true location of the cross-section.

After the cross-section is determined, the data points lying on this vertical plane are plot-

ted onto the next canvas (Figure 4.2(b)). These data points’ coordinates are rectified to

make the plot unrelated to the position of the cross-section. It is achieved by the rotation

of the cross-section to the y = 0 plane as illustrated in Figure 4.3. On the xy-plane, the

line l represents the cross-section and the intersection of l and y = 0 is denoted as point

(a, 0). Subtract the x-coordinate by a and rotate the data point along the z−axis by angle

θ. In this process, all the data points lying on the cross-section are now on the y = 0 plane

(Figure 4.2(b)). As shown in the canvas, each powerline has a shape of the flat parabolic

curve and we provide a polygon selection tool for the user to manually select the points

belonging to one powerline as shown in Figure 4.2(b). These selected points are used to

fit a parabolic curve and the resulting curve is plot in the canvas for the user to verify and

make corrections.

Figure 4.3. Illustration of the rotation of the selected cross-section plane. The red curve
line represents the cross-section plane’s projection on xy-plane and the yellow line is the
resulting position of the rotation process.
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4.4 Manual Tool Vectorization Result

The curve-fitting results are saved to a file storing the essential parameters about the

curves (JSON File 4.1) and we also provide one PLY file saving the interpolation result

of the fitted curve for each powerline. Render the interpolation result back to the original

point cloud (Figure 4.4) visually present the effectiveness of our manual tool. The logic

structure of this tool to vectorize the powerlines is summarized in the following flow char

4.5.

{
"name": "cross_section_0_0.ply",
"parabolic_param": [0.0755615064055697, -0.08097156847981313,

0.40319629645914995],
"start": -0.7874018341334725,
"end": 1.407778689440915,
"rectified_inv_rt_matrix": [

[0.9992778498269816, 0.03799708995652619, 0.0],
[-0.03799708995652619, 0.9992778498269816, 0.0],
[0.0, 0.0, 1.0]

],
"rectified_rotation_pt": [-0.01964921198909366, 0.0, 0.0]

}

Listing 4.1. JSON File example for a fitted curve’s parameters

Figure 4.4. Interpolation result of the parabolic curves
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Figure 4.5. Flow chart of the manual tool
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CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, we evaluate the automatic pipeline’s correctness and effectiveness in locat-

ing and vectorizing the powerlines in a given landscape point cloud. As explained in the

introduction, there is rarely a dataset of landscape point clouds with vectorization results

of linear structures inside. Therefore, we propose to use the result from our manual tool

as the ground truth for evaluation. The manual tool is designed to keep the high accuracy

of the resulting powerlines, and during each stage of the manual selection, user can check

the correctness and accuracy of the fitted curve. We evaluate the correctness by measuring

the difference between the result of the pipeline and the manual solution and evaluate the

performance of the automatic pipeline by the running time at each stage.

5.1 Experimental Setup

The experiment is done on a computation platform, which has an Intel i7-4770k CPU @

3.5GHz x 8 and 32 GiB (1333 MHz) memory. There are three different input point clouds,

including the one used as an illustration in the implementation chapter. We denote these

point clouds by Example-i shown in Figure 5.1 as follows. For each example, we capture

both the RGB and height images of the point cloud for a better viewing effect. The detailed

parameters of each point cloud are summarized in Table 5.1.

Since the total size of each point cloud is huge to handle all together by the pipeline,

we designed our pipeline to be able to handle tiles separately in the outlier removal and

point cloud downsampling stage. The outlier removal algorithm treats each voxel cell

separately and independently. However, in the downsampling stage, the density distri-

bution of the whole point cloud is essential. Therefore, we gather the density distribution

information from separated tiles and distribute the density information back in each itera-

tion of the downsampling process. After downsampling the point cloud, we merge all the
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(a) Example-1 RGB Image (b) Example-1 Height Image

(c) Example-2 RGB Image (d) Example-2 Height Image

(e) Example-3 RGB Image (f) Example-3 Height Image

Figure 5.1. Point Clouds for Evaluation

Table 5.1. Parameters of example point clouds

Name Number of Points File Size Comment

Example-1 21 million 571.8 MB Points on the the powerlines are comparably dense

Example-2 35 million 966.2 MB Powerline data points are very sparse and some

parts are lost

Example-3 30 million 756.1 MB Contains much more outliers and some part of the

point cloud is more sparse than the powerlines
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tiles to a single point cloud as the input of the local analysis, clustering, and curve-fitting

stages.

For the manual tool solution, we make use of the downsampled point clouds from the

pipeline since the downsampling process hardly removes the points belonging to linear

structures.

5.2 Evaluation of Correctness

This evaluation of the result of the automatic pipeline consists of two different aspects: the

evaluation of the visual result of vectorization parameters and the numerical comparison

between the ground truth (the output of the manual tool) and the vectorization result.

5.2.1 Visual Evaluation

In order to visualize the vectorization parameters of each powerline, we make use of the

interpolation technology and fit the generated data points back into the original point

cloud. Since the point clouds are very large, only a portion of the powerlines is shown in

Figure 5.2.1.

The visual result is acceptable with the correct position and shape of each fitted curve.

In the figures, we observe that for the powerline whose most parts are lost is difficult for

the pipeline to recognize and get the parabolic curve it belongs to. Moreover, the start and

end position of the powerline is not accurate for the point clouds with many noisy data

points around the powerline towers. The overall visualization shows the effective and

promising of our automatic pipeline.

5.2.2 Numerical Evaluation

In order to describe a numerical comparison between two parabolic curves or any types of

curves in 3D, data points correspondence (a predefined mapping between points on two

curves) is required for accurate analysis. However, in our testing dataset, there is no such

correspondence defined on the raw point cloud. As a way to work around this problem,
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(a) Example-1

(b) Example-2

(c) Example-3

Figure 5.2. Visual evaluation of vectorization parameters
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we propose to use other metrics to measure the degree of visual effect that the difference

between the two curves leads to. There are two metrics as follows:

• Included angle between the cross-section planes: this metric measures the differ-

ence between the positions of the two parabolic curves. Each curve is defined within

a vertical plane that all points on the curve lie on. The angle difference between the

two vertical planes defines the coincidence degree of these curves in 3D space (Fig-

ure 5.3(a) shows the overview of the projection line L1 and L2 of the cross-section

planes).

• Degree of shape distortion: this metric measures the degree of distortion between

two parabolic curves C1 and C2. Both curves are rearranged to match their low-

est points to the origin and the area between the common part (gray area in Figure

5.3(b)) of these curves is calculated to define the absolute distortion value. This value

can be calculated by the integration or discretized summation over the uniform sam-

pling points on the x-axis (e.g. 100 samples).

(a) Included angle between the cross-section
planes

(b) Degree of shape distortion

Figure 5.3. Metrics for numerical evaluation

The evaluation result of the three point clouds are summarized in Table 5.2.

From the result of the evaluation, we notice that the averaged included angle is very

small and we suppose it is caused by the tiny differences between the curve-fitting data
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Table 5.2. Numerical evaluation

Name Averaged included angle (in radian) Averaged degree of shape distortion

Example-1 0.008762 0.014474

Example-2 0.04723 0.39348

Example-3 0.01832 0.019478

points and the manually selected ones. After the process of outlier removal and down-

sampling, data points belonging to the powerlines are mostly preserved. For the degree

of shape distortion, this value is affected by the overall length of each powerline and the

quality of data points for curve-fitting. This metric describes the visual affectiveness of

the error in curve-fitting. Therefore, the longer the fitted curve is, the larger the degree of

distribution will be.

5.3 Running Time Each Stage of the Pipeline

5.3.1 Outlier Removal

In Table 5.3 we summarize the running time of our voxel-based outlier removal algorithm.

The voxel-size in each model is adapted from the point cloud scale in the real world. In

short, there are many factors influencing the running time, such as the point cloud density

and the real-world scale of the landscape. The running time is measured with a single

CPU core, while our voxel-based algorithm can be easily adapted to parallel execution on

multiple cores.

Table 5.3. Outlier removal running time

Name # points Voxel-size Voxel-based outlier removal running time

Example-1 21.2m 0.03 2.510s

Example-2 35.8m 2.87 4.297s

Example-3 28.0m 4.15 4.745s
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5.3.2 Point Cloud Downsampling

In Table 5.4 we observe that the running time for the downsampling process is not pro-

portional to the running time of the outlier removal process. The sampling density and

the real-world scale of the input point cloud greatly affect the processing time. Specifi-

cally, in Example-3, the point cloud is of very large-scale comparing with the previous two

examples and the density distribution is quite different - most part of the point cloud is of

similar density while only a small portion is of very high density. This leads to the high

downsampling rate after one iteration of our density-based downsampling. One possible

solution is to apply uniform downsampling on all processed points to a target lower rate

of downsampling.

Table 5.4. Point cloud downsampling running time

Name Voxel-size Running time Downsampling rate (one iteration)

Example-1 0.03 13.859s 24.735%

Example-2 2.87 28.009s 53.009%

Example-3 4.15 82.153s 80.319%

5.3.3 Local Feature Computation

In Table 5.5, we choose the radius of nearest neighbor search as half of the voxel-size in

the previous section and the input point cloud is downsampled from the previous stage

with additional uniform downsampling to achieve a ten percent downsampling rate. The

running time for Example-1 and Example-2 shows the correlation between the number of

points and the running time. However, Example-3 takes a much short time for the local

feature computation. We suppose this is caused by the average low density of the point

cloud in Example-3 that there is a much smaller number of neighbor points involved in

the computation. The computation time of this stage is parallelized by OpenMP on 8 CPU

cores.
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Table 5.5. Local feature computation running time

Name Radius # points Running time

Example-1 0.015 2.10m 8.396s

Example-2 1.43 3.46m 12.943s

Example-3 2.25 2.78m 8.952s

5.3.4 Clustering and Curve-Fitting

In our observation, the current clustering algorithm we proposed spends a large amount

of time to exclude many small clusters. Specifically, it takes the algorithm around 7mins to

process the filtered point cloud from the previous feature computation stage (about 59.1

thousand points), and around 5mins is spent on the small clusters. The processing speed

of the whole algorithm is continuously decreasing because the more points are processed

to form clusters, the less available points there are to generate new clusters. As a result, it

will take a very long time for the algorithm to process a large point cloud. We propose to

split the point cloud into smaller parts that each of it contains a smaller number of points

and process each part one-by-one or in parallel. The curve-fitting algorithm’s running

time depends on the algorithm used and the number of data points involved in the com-

putation and on average, it takes around 3.14ms to fit 10000 data points. Therefore, the

running time for clustering is correlated to the number of the split. Since it is ambiguous

to the evaluation of the running time of the clustering algorithm, the running times are

not shown here.

5.4 Overall

In a summary, the running time of our pipeline to vectorize the powerline structures from

a landscape point cloud is influenced by many factors, among which the sampling density

(the quality of the point cloud) and the density distribution (affected by the composition

of the landscape) have the greatest impact. Voxel-based outlier removal is considerably

faster compared with other statistical outlier removal algorithms. Point cloud downsam-

pling and local feature computation is mostly affected by the density distribution in the
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point cloud. However, the proposed clustering algorithm might waste some time on pro-

cessing the small clusters which are not the ones of our interest. It might be resolved by

taking the early-termination of the clustering process to save computation time.
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CHAPTER 6

CONCLUSION

In this thesis, we introduced our point cloud processing pipeline aiming to extract and

vectorize the linear structures within a large-scale landscape point cloud. We discussed

the algorithms for removing outliers, reducing redundant computation, determining lo-

cal neighbor points, point distribution analysis, linear points clustering, and curve-fitting.

Meanwhile, we summarized the important factors affecting the parameter selection and

vectorization result of our pipeline, such as the non-uniform density distribution in the

raw input point cloud. Besides the automatic processing pipeline, we designed and im-

plemented a manual vectorization tool enabling users to select data points of interest and

fitting curves with proper visual feedback. For the evaluation of the pipeline, the manu-

ally generated curves were used as the ground truth to evaluate the overall performance

and the influential factors of the running time at each stage was discussed.

In conclusion, our pipeline and manual tool both satisfy the goal of our task. While in

some stages of the pipeline, a better running time could be achieved in the future work.

Specifically, a better adaptive algorithm can be designed to determine the proper voxel-

size for analysis of the point cloud and the data point clustering algorithm might be re-

vised to redeem the waste of time on the small clusters.
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