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1. Morse-based Topological Analysis on Ter-
rain Data

1.1. Background

Simplical Complex a k-simplex σ is the convex hull of
k+1 affinely independent points in the Euclidean space. A
simplicial complex Σ is a finite set of simplexes, such that:
(i) each face of a simplex in Σ belongs to Σ; (ii) for each
pair of simplexes σ and τ , either σ ∩ τ = ∅ or σ ∩ τ is a
face of both. The k-skeleton of a d-dimensional complex Σ
(with k ≤ d ) is the subset of containing the cells of Σ of
dimension less than or equal to k.

Discrete Morse theory Forman theory [5] is a combina-
torial counterpart of Morse theory which extends the results
of Morse theory to discrete data. Given a simplicial com-
plex Σ, a discrete vector is a pair of simplexes (σ, τ), where
σ is a face of τ . A discrete vector field V is a collection
of pairs (σ, τ) such that, each simplex of Σ is in at most
one pair of V . Simplices that are not the tail or the head
of a vector are called critical. In a triangle mesh, critical
triangles are maxima, critical edges are saddles and critical
vertices are minima. Pairs are formed by a triangle and an
edge; and by an edge and a vertex. A V-path is a sequence
σ1, τ1, σ2, τ2, ..., σr, τr, such that (σi, τi) ∈ V , σi+1 is a
face of τi, and σi ̸= σi+1. A V-path with r > 1 is closed
if σ1 is a facet of τr different from σr−1. A discrete vec-
tor field V is called a Forman gradient if it has no closed
V-paths. A separatrix Vi-path is a V -path connecting two
critical simplexes of dimension i + 1 and i, respectively.
In a triangle mesh, we have each separatrix V0-path con-
necting a critical edge to a critical vertex and separatrix V1-

path connecting a critical triangle to a critical edge. Criti-
cal simplices are the discrete counterpart of critical points
and separatrix V -paths are the discrete counterpart of the
integral lines in the continuous case. Any descending k-
manifold, is the collection of the k-simplices of Σ reached
by the gradient paths starting from a critical k-simplex. Du-
ally, an ascending k-manifold is the collection of the (d-k)-
simplices reached by the gradient paths (visited backward)
starting from a critical (d-k)-simplex. The collection of the
descending and ascending manifolds forms the discrete as-
cending and descending Morse complexes, respectively.

1.2. Morse Incidence Graph (MIG) simplification

We simplify a Morse Incidence Graph (MIG) to discard in-
significant critical points that do not contribute to the main
topological structure, thus focusing on preserving the most
relevant topological features [2, 3].

To do so, we employ a persistence-based simplification
approach on the MIG. Persistence measures the importance
of a pair of connected critical points. In a MIG G, for each
arc e connecting two critical points p1 and p2, the persis-
tence value of e is calculated as min(|f(e)−f(p1)|, |f(e)−
f(p2)|), where f is a scalar function defined on the input
data (see Background Section in the manuscript).

Follow the critical point cancellation operation in [2],
Algorithm 1 iteratively cancels the pairs of Saddle-
Maximum or Saddle-Minimum with low persistence value
and updates the MIG connectivity. The remaining nodes
and arcs comprise the fundamental topological characteris-
tics of G. Please note that critical points close to the bound-
ary are removed to minimize boundary effects.

1.3. 1-Wasserstein distance for persistence dia-
grams

The Wasserstein distance quantifies the discrepancy be-
tween two probability measures. Sliced The Sliced Wasser-
stein distance [8] offers an approximation of this met-
ric in 1D space. Sliced Wasserstein distance simplifies
computation by considering one-dimensional projections of
the distributions. Instead of calculating the distance di-
rectly in a high-dimensional space, the distributions are di-
vided into multiple one-dimensional projections, and the
1-Wasserstein distances for these projections are computed
and aggregated.

We applied sliced Wasserstein kernels introduced for
persistence diagrams [1] with the implementation from Per-
sim Package 1 to calculate the sliced Wasserstein distance.

1Publicly accessible at https://persim.scikit-tda.org/



Algorithm 1 Morse Incidence Graph simplification.

Require: G(N,E): Morse Incidence Graph, pthresh:
persistence threshold
N : Set of nodes with n(index, v), where index ∈ {0 :
minimum, 1 : saddle, 2 : maximum} and v is the scalar
function value.
E: Set of arcs with e(s,m, v), where saddle s, non-
saddle m ∈ N , and v is the persistence value.

Sort arcs E in ascending order of persistence values.
e(m, s, v)← G.E[0]
while e.v ≤ pthresh do

Remove nodes s and m from N .
Remove arc e from E.
for each neighbor p of s, if p ̸= m do

for each neighbor q of m, if q ̸= s do
Add arc (p, q, |p.v − q.v|) to E.
Re-sort E in ascending order of persistences.
e(m, s, v)← G.E[0]
Break and return to the start of the WHILE loop.

end for
end for

end while

1.4. Influence of mesh configuration to discrete For-
man method

For the Forman method applied to the regular gridded data,
Delaunay trianglation [4]results vary a lot, because for each
squared cell from the raster data, the diagonal connection
between vertices is not determinant by the Delaunay tri-
angulation. This difference in triangulation results, known
as the mesh configuration, might lead to different topolog-
ical analysis results for the same terrain data. For exam-
ple, in Fig. 1 and Fig. 2, we plot a region influenced by the
mesh configuration in the Swiss1 dataset. We consider two
mesh configurations for the Forman method: for each ver-
tice, we connect it to its (N, S, E, W, NW, SE) neighbors
or (N, S, E, W, NE, SW) neighbors, named as Mesh1 and
Mesh2, respectively. As illustrated in the yellow circled re-
gion in Fig. 1, the connectivity of the Mesh2 appears to be
more reasonable than the Mesh1 in the region. The sepa-
ratrix lines in the Mesh2 are more aligned with the results
from ImplicitTerrain which follows the gradient of the ter-
rain surface. The mesh configuration in Mesh1 seems to
hinder the separatrix lines to move in the NE and SW di-
rections, while in the meantime, encouraging the separatrix
lines to move in the NW and SE directions. As a result,
the MIGs obtained from the Mesh1 and Mesh2 are differ-
ent, leading to Wasserstein distance between the two MIGs,
as shown in Fig. 6 and Tab. 1. To accommodate this influ-
ence, we propose to use the ratio of Wasserstein distance as

Figure 1. A zoomed-in region of the mesh configuration influence
the topological analysis results. The yellow box is the zoomed-in
region and the yellow circle denotes the main difference between
the methods. In the first plot of ImplicitTerrain, we show the es-
timated gradient field by the pixel shifting method. In the two
underlying plots, we use the light gray colored mesh to indicate
the mesh configuration of Mesh1 and Mesh2, respectively. Note it
is a low-resolution illustration of the connection.

described in the main paper.

2. Tracing Gradient Field for Topological
Analysis

According to Sylvester’s criterion [6], critical point clas-
sification can be achieved by analyzing the second-order
derivative (i.e. Hessian matrixH ∈ R2) at the critical point
coordinate p⃗ and it takes the form:

H|p⃗ =

[
∂2Fs

∂x2
∂2Fs

∂x∂y
∂2Fs

∂y∂x
∂2Fs

∂y2

]
=

[
fxx fxy
fyx fyy

]
(1)



Figure 2. An overview of the mesh configuration influence on the
topological analysis results. Yellow box indicates the zoomed-in
region in Fig. 1.

Type(p⃗) =


Saddle if det(H|p⃗) < 0

Maximum if det(H|p⃗) > 0 and fxx < 0

Minimum if det(H|p⃗) > 0 and fxx > 0
(2)

where H|p⃗ is the Hessian matrix at p⃗ and det(H|p⃗) is
its determinant. To locate the critical point, we trace the
points whose gradient norm is zero. In practice, critical
point candidate locations are pre-selected by comparing
the difference between neighboring data points as in [9].
Clone and random jitter of the coordinates are applied to
these candidate coordinates. Starting from these candidate
points, a step-by-step gradient norm minimization (as in Al-
gorithm 2) is applied to gradually move these points into
locations with gradient norms less than a threshold (e.g. 1e-
4). Converged locations are further classified into different
types of critical points and used as input for the separatrix
line tracing stage. To minimize the gradient norm ||∇Ψs||,
the gradient descent direction d⃗ is calculated as:

d⃗ =− ⟨∂||∇Ψs||/∂x, ∂||∇Ψs||/∂y⟩
=− ⟨fxfxx + fyfyx, fxfxy + fyfyy⟩

(3)

where fx, fy are the first-order derivatives of Ψs and
fxx, fxy, fyx, fyy are the second-order derivatives.

After identification of critical points, we apply a numer-
ical tracing algorithm (as in Algorithm 3) to trace the sepa-
ratrix lines connecting critical points. The separatrix line is
traced by following the maximum function increasing and

Algorithm 2 Gradient Norm Minimization

Require: pts: candidate points
Require: step size: gradient descent step size
Require: Ψ: INR model

// By automatic differentiation
Function gradient(Ψ, x⃗){· · · }
Function Hessian(Ψ, x⃗){· · · }

Function grad norm minimization(pts, step size,Ψ)
converged pts← [ ]
// for–loop parallelized on GPU
while TRUE do

for p⃗ in pts do
grad norm← norm(gradient(Ψ, p⃗))
if grad norm < .0001 then

converged pts.add(p⃗)
remove p⃗ from pts
if pts is empty then

break
end if

end if
H ← Hessian(Ψ, p⃗)
fxx, fxy, fyx, fyy ← H
d⃗← −⟨fxfxx + fyfyx, fxfxy + fyfyy⟩
p⃗← p⃗+ step size · d⃗
// Update step size for next iteration if needed

end for
end while
return converged pts
EndFunction

decreasing directions from the critical point to the next criti-
cal point. The tracing is terminated when the gradient norm
is below a threshold (e.g. 1e-4) or the tracing path reaches
the boundary of the terrain data. The starting direction from
each saddle point is discribed as in the main paper. The
separatrix lines are used to construct the Morse Incidence
Graph (MIG) for topological analysis.

In our tracing algorithms, we avoid identifying the criti-
cal points on the boundary of the terrain data, as they are not
reliable as topological features of the tile. Different meth-
ods may handle the boundary differently during the identifi-
cation of critical points and construction of the MIG. There-
fore, to avoid the influence of the boundary, we only con-
sider the critical points inside the terrain data for the topo-
logical analysis and also filtered out the critical points on
the boundary for results from the Forman method. Separa-
trix lines that reach the boundary are also discarded during
the MIG construct stage.



Algorithm 3 Trace Separatrix Lines from Saddle points

Require: pts: Saddle points
Require: step size: gradient descent step size
Require: Ψ: INR model

// Eigen decomposition return sorted eigenvalues and
eigenvectors
Function eigen(H){· · · }

Function separatrix lines(pts, step size,Ψ)
// for–loop parallelized on GPU
for p⃗ in pts do
p⃗1 = p⃗2 = p⃗3 = p⃗4 ← p⃗
// replace p⃗ with p⃗i in the pts
λ1, λ2, v⃗1, v⃗2 ← eigen(Hessian(Ψ, p⃗))
sign1 = sign2 ← 1
sign3 = sign4 ← −1
for i in 1, 2, 3, 4 do
pathes[i]← [ ]

p⃗i ← p⃗i + signi · step size · d⃗
end for
for i in 1, 2, 3, 4 do

while TRUE do
pathes[i].add(p⃗i)

d⃗← gradient(Ψ, p⃗i)

grad norm← norm(d⃗)
if grad norm < .0001 then

remove p⃗i from pts
if pts is empty then

break
end if

end if
p⃗i ← p⃗i + signi · step size · d⃗

end while
end for

end for
return pathes
EndFunction

3. Experiment Results for Swisstopo Datasets

For the four tiles of Swisstopo datasets we used in the paper,
we provide the detailed experiment results in terms of the
fitting, topological, and topographical analysis. For each
tile in the swissALTI3D [10] dataset, its tile name can be
uniquely identified by the tile’s row and column coordi-
nate in the dataset. The tile name of Swiss1 is 2494 1141,
Swiss2 is 2717 1187, Swiss3 is 2710 1195, and Swiss4 is
2641 1180. These four tiles are selected to represent differ-
ent terrain characteristics as shown in Fig. 3.

3.1. Fitting Results

Numerical results are reported in the main paper, while we
provide more visualizations of the terrain tiles and our re-
constructed results in this section. As shown in Fig. 3, we
provide the original terrain data, the reconstructed data by
ImplicitTerrain, the displacement map used for Geometry
model fitting, and the gradient field visualization. Note
the existence of cliffs in the Swiss2 and Swiss3 datasets,
which are challenging for the fitting process. The gradient
field visualization shows that at the cliff regions, the gradi-
ent magnitude is much larger than in other regions, which
poses a challenge for the fitting process. However, the gra-
dient angle difference is small. According to the gradient
field tracing algorithms we used in this paper, as long as
the gradient angle is correct and consistent, the topological
analysis results should be reliable. This is also confirmed
by the topological analysis results for the four tiles. Even
though different tiles have different terrain characteristics,
our pipeline is flexible and powerful enough to handle them
with the same pipeline configuration. In Fig. 4, we pro-
vide the analysis of difference maps between the smoothed
terrain data and the Surface model estimation by Implicit-
Terrain. For each dataset, we show the pixel-wise abso-
lute difference map, the Fourier spectrum of the smoothed
data, the Fourier spectrum of the model estimation, and the
difference between the two spectra. From our observation,
there is no direct relationship between the PSRN value and
the frequency domain difference. Since PSNR is related to
the average loss of the fitting result, good fitting of low-
frequency components of the terrain data might lead to a
high PSNR value. Also for topological analysis, the low-
frequency components contribute more to the overall shape
of the terrain surface, which means a good fitting of low-
frequency components will benefit the accuracy of topolog-
ical analysis. However, the high-frequency components are
also important for the visual quality of the reconstruction,
as the high-frequency components are related to the detailed
terrain features. Note that different tiles have different fre-
quency components, in future work, we think this difference
can be used to guide the network configurations for different
terrain tiles.

We plot the gradient magnitude estimated by the image
pixel shifting method and our Surface model in Fig. 5. The
gradient magnitude difference (GMD) and gradient angle
difference (GAD) are calculated between the two gradient
fields. The GMD and GAD are all in the normalized range
[−1, 1] of the input so that all the tiles can be plotted in the
same color coding. Larger differences in the gradient mag-
nitude happen in the regions with large gradient change, or
in other words, with more complex topology, e.g., cliff re-
gions. This is because fitting such drastic changes might
already exceed the capability of current network configura-
tions, and also because the estimation from the image pixel



shifting method may not be accurate in these regions. As
discussed in the fitting results, the gradient angle difference
is small, which is a good sign for the topological analysis.
Moreover, apart from the drastic changing regions, larger
GAD values are also observed in the regions with much
smaller gradient magnitudes, which are likely to be flat re-
gions. For topological analysis, flat regions usually do not
contain critical points and rarely contribute to the terrain
surface’s topological features [11]. Therefore, the gradient
angle difference in these regions is not a big concern for our
topological analysis.

3.2. Topological Analysis Results

Apart from Tab. 1, we provide the visualization of the topo-
logical features extracted from the four tiles in Figs. 6 to 9.
For each dataset, we show the critical points, the separa-
trix lines, and the Morse Inequalities Graph (MIG) obtained
from the Forman method. Results from both Mesh1 and
Mesh2 are shown together with the results from Implicit-
Terrain. In the last column of each figure, we plot the per-
sistence diagrams from the corresponding MIGs. The per-
sistence diagram from ImplicitTerrain is overlaid with the
persistence diagram from Mesh1 and Mesh2 for compari-
son.

3.3. Topographical Analysis Results

Topographical features can be obtained from the surface
derivatives estimated by the surface model. As mentioned
in the main paper, the normal direction of the terrain surface
can be obtained as ⟨−fx,−fy, 1⟩, where fx and fy denote
the first order derivative of the surface function in x and y
directions. In Fig. 10, we plot the Normal mapping to vi-
sualize the normal direction of the terrain surface, in which
the (x, y, z) normal direction is color encoded as (r, g, b)
channels, correspondingly. The slope and aspect are calcu-
lated from the normal direction, where the slope is the angle
between the normal direction and the vertical direction, and
the aspect is the angle between the normal direction and the
north direction.

With the capability to obtain the second-order deriva-
tives, the curvature of the terrain surface can also be calcu-
lated. According to [7], the mean curvature of the manifold
takes the form:

H =
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

2(1 + f2
x + f2

y )
3/2

(4)

where fxx, fxy, fyy are the second-order derivatives of the
function. In Fig. 10, we show the mean curvature of the
terrain surface. The mean curvature is color encoded in the
range of [−0.5, 0.5], where the negative values represent the
concave regions and the positive values represent the con-
vex regions. From this curvature plot, we can also observe
the different terrain characteristics of the four tiles.
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(a) Swiss1 (b) Swiss2

(c) Swiss3 (d) Swiss4

Figure 3. Fitting results for the four Swisstopo datasets. For each dataset, we show the original terrain data, the reconstructed data by
ImplicitTerrain, the displacement map used for Geometry model fitting, and the gradient field visualization. For the gradient field, the red
and blue colors represent the estimations by Surface model and image pixel shifting, respectively.



(a) Swiss1 (b) Swiss2

(c) Swiss3 (d) Swiss4

Figure 4. Analysis of difference maps between the smoothed terrain data and the Surface model estimation by ImplicitTerrain. For each
dataset, we show the pixel-wise absolute difference map, the Fourier spectrum of the smoothed data, the Fourier spectrum of the model
estimation, and the difference between the two spectra. Difference maps are color encoded with a cap to 0.25% of the overall data range
and PSNR and SSIM metrics are also displayed. For spectrum plots, the magnitude of the Fourier transform is shown in log scale within
the range of [10−5, 105].



(a) Swiss1 (b) Swiss2

(c) Swiss3 (d) Swiss4

Figure 5. Analysis of gradient fields for the four Swisstopo datasets. For each dataset, we show the gradient field estimated by the gradient
field estimated by pixel shifting on the smoothed terrain data and by the Surface model. The differences between the two gradient fields
are displayed in gradient magnitude difference (GMD) and gradient angle difference (GAD). Both GMD and GAD’s mean and standard
deviation are reported in meters and radians, respectively.

Name precision recall F0.5 score WS(Ψs,Mesh1) WS(Ψs,Mesh2) WS(Mesh1,Mesh2) WSratio

Swiss1 0.90 0.96 0.91 71.27 11.15 67.53 0.17
Swiss2 0.91 0.831 0.89 86.65 24.19 78.65 0.31
Swiss3 0.89 0.78 0.87 186.91 124.61 180.04 0.69
Swiss4 0.91 0.83 0.89 47.86 171.68 137.92 0.35

Table 1. Topological analysis results of the Swisstopo datasets. WS denotes the Wasserstein distance between two persistence diagrams.



Figure 6. Topological analysis results of Swiss1.



Figure 7. Topological analysis results of Swiss2.



Figure 8. Topological analysis results of Swiss3.



Figure 9. Topological analysis results of Swiss4.



(a) Swiss1 (b) Swiss2

(c) Swiss3 (d) Swiss4

Figure 10. Topographical analysis results for the four Swisstopo datasets. For each dataset, we show the normal mapping, slope, aspect,
and mean curvature of the terrain surface estimated by the ImplicitTerrain. For slope and aspect, values are in degrees. For mean curvature,
values are in meters−1 and color encoded in the range of [−0.5, 0.5].
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